
Husky Machine Operations

Husky Host Interface Protocol Specification

HUSKY MACHINE OPERATIONS

HUSKY HOST INTERFACE PROTOCOL SPECIFICATION
This manual describes the interface between a Husky Injection Molding Machine with the Husky Host Interface option and the Host system. An overview of the system and a detailed command set are given. This manual is issued by the Systems Software Group.

SPECIFICATION SUBJECT TO CHANGE

Husky Injection Molding Systems Ltd.

Machine Operations

560 Queen Street South

Bolton, Ontario, Canada L7E 5S5

REVISION RECORD

	Revision
	Date
	Comments

	1.00
	1994 12 12
	Initial Release.

	1.01
	1995 4 11
	Added text data variable support, reformatted.

	1.02
	1995 5 15
	Cleaned up per MD, SPC II and Tandem updates.

	1.03
	1995 7 28
	Restored reference to RFC 1179 for printing.

	2.00
	1998 4 17
	Updated for G-Line, added Event Function, updated variable list, much cleanup.

	2.01
	1999 10 12
	Added Status Function.

	2.02
	1999 11 08
	Change references to “Alarm” to “Cycle Interruption”

Contents

	11.
Introduction

2.
System Overview
2
3.
Functions
3
3.1
Host Display Interface
3
3.2
Sending Machine Set-ups to Host
3
3.3
Receiving Machine Set-ups from Host
4
3.4
Read Process Data
5
3.5
Events
5
3.6
Cycle Interruptions
5
3.7
SPC
6
3.8
Machine Status
6
3.9
Remote Printing
6
4.
Technical Implementation
7
4.1
Communications Interface
7
4.2
Application Interface
8
4.2.1
Type 1 - Machine Functions
8
4.2.1.1
Initialize the connection
11
4.2.1.2
Start of job
12
4.2.1.3
Languages
13
4.2.1.4
List process variable
15
4.2.1.5
Reading process variables
17
4.2.1.6
End of cycle
18
4.2.1.7
Events
19
4.2.1.8
Cycle Interruptions
20
4.2.1.9
SPC parameters
22
4.2.1.10
Machine Status
24
4.2.1.11
Up-load a machine set-up
25
4.2.1.12
Error
29
4.2.2
Type 2 - Display Interface
30
4.2.2.1
Initialize the connection
31
4.2.2.2
Start or refresh the display
32
4.2.2.3
Stop the display
33
4.2.2.4
Key-stroke message
34
4.2.2.5
Screen display command
35
4.2.2.6
Menu key command
36
4.2.2.7
Errors
37
4.2.3
Type 3 - Remote Printing
37
Appendix A - Process Variables
38
Appendix B - Cycle Interruptions
39
Appendix C - Key-Strokes
39
Appendix D - Display Commands
39
Appendix E - Event Text Formats
39

1. Introduction

This document describes the functions and interface of the Husky Host Interface option. This product is designed to connect a Husky Molding Machine to a host computer, enabling a user-supplied host system to obtain process variable data and machine events, receive machine cycle interruptions, and SPC information (if equipped), send and receive setup files, query machine status, and communicate with shop floor operators via a dedicated Host Terminal screen on the Husky Operator Interface.

Note: The Husky Host Interface option only supplies the software and hardware implementing the protocol on the Husky Molding Machine. The host system must be supplied by the customer and is not provided with this option.

The document begins with an overview of a typical system. This is followed by a description of user functions, including how the user views the system, and then by a technical description of the interface. This interface is divided into three logical sections, where each section provides a distinct function. The messages described in each of these sections flow through separate virtual communications ports of the network interface.

2. System Overview

The data communications messages between the host system and the Husky Operator Interface (OI) are sent via an Ethernet connection using TCP/IP socket streams. (see Figure 1).
Process data, events, cycle interruptions, SPC information, machine set-up information, machine status, and terminal commands are transmitted between the host and the molding machines. The host communications option also adds remote printing capabilities to the Husky OI, allowing a machine operator to use a printer supported by the print host.

The host system and the print host shown below in Figure 1 are depicted as separate nodes on the network, but they may be configured on a single node. The interface allows any host system to communicate with any number of Husky machines and any OI to use the printing facilities provided by any print host.

[image: image1.png]Host

Host

I I Ethernet

Husky Ol

Husky Ol

Husky Ol

Machine PLC

Machine PLC

Machine PLC

Husky Molding Machine

Husky Molding Machine

Husky Molding Machine

Figure 1 - System Overview

3. Functions

3.1 Host Display Interface

The Host system controls what appears on the allocated area of the OI screen and menu labels. The operator exits the Host Terminal screen by pressing one of the dedicated screen keys from the lower row of the “Screen Selection Keypad”.
The display supports text and graphics, with text presented on character cell boundaries. There are 25 lines of character cells by 78 columns, bordered by a thin outline. Each cell is 8 pixels wide and 16 pixels high. The total graphics area is 425 pixels high and 636 pixels wide. Each of the ten menu labels on the screen are made of two lines of eight characters each.

The display can be either colour or monochrome. Commands are provided to allow the host system to set the colour scheme.

The Husky OI transmits all key-strokes to the host with the expection of the bottom row of screen selection keys, and the print screen key.

[image: image2.png]HOST TERMINAL

Figure 2 - OI Screen Area for Host Terminal

3.2 Sending Machine Set-ups to Host

Machine set-ups contain a set of operating parameters for a specific job or product. Set-up functions require the Husky “operator” security level.

When configured with the Husky Host Interface option, Husky set-up number one is reserved. When the operator saves to set-up number one, it is transmitted to the host system.

Set-ups being sent to the host system are identified by:

· Date and time (19 characters, “YYYY-MM-DD HH:MM:SS”)

· Mold number (8 characters)

· Machine type (9 characters)

· Machine serial number (6 characters)

· Resin type and name (16 characters).

The host must only save set-ups on its disk if the whole data file is received correctly. The set-up will not appear in set-up number one until the host has received the entire data file with no errors. If an error occurs when sending a machine set-up, the Husky OI displays an error message on the warning line and prompts the operator for a response before continuing.

If the host interface is down, the operator cannot save to set-up number one. The set-up will have to be saved to another set-up number and transferred to set-up number one when the interface has been re-established.

3.3 Receiving Machine Set-ups from Host

When configured with the Husky Host Interface option, the Husky machine can also receive machine set-ups into set-up number one from the host system.

When the host system transfers a set-up to the machine, it is stored in the set-up number one slot. Loading the new set-up number one into the Husky machine is under the control of the operator. The operator loads this new machine set-up when ready.

If the machine serial numbers are different when the Husky machine is receiving a new set-up, the OI prompts the operator on the warning line before the new set-up is accepted. Typically, only set-ups from similar machines are accepted.

Set-ups are identified on the Husky machine by:

· Date and time (19 characters, “YYYY-MM-DD HH:MM:SS”)

· Mold number (8 characters)

· Machine type (9 characters)

· Machine serial number (6 characters)

· Resin type and name (16 characters).

For security and safety reasons, set-ups must not be modified in any way by the host system. Checks internal to the Husky system will prevent the use of altered set-ups. The operator interface displays a message on the warning line when it is receiving a new set-up.

The Husky machine only saves set-ups in its memory if the whole data file has been received correctly and the internal checks complete successfully. If an error occurs when receiving a machine set-up, the Husky OI displays an error message on the warning line and prompts the operator for a response before the machine continues.

3.4 Read Process Data

At the end of every cycle, the Husky machine will transmit process data collected during the last cycle to the host system. (see Appendix A).

3.5 Events

The Operator Interface will transmit to the Host Computer all events normally stored in the Event Log including:

· Cyc.Int. - Cycle Interruption active and inactive.

· Alarm - Machine Alarms active and inactive.

· Setpoint - Changes to setpoints, options, selections, etc.

· Machine - Changes in machine state (Idle/Manual, Auto Cycling, etc.)

· OI Start - Startup of the Operator Interface.

· PLC Link - PLC communications status.

· PLC2Link - Second PLC communications status.

· CLC Link - CLC Robot Controller communications status.

· Bnchmark - Cycle Time Breakdown Benchmark captured.

· Setup - Mold Setup save and recall.

· Heats - Broken Thermocouple or Controller faults.

· SPC - Individual SPC variable alarms.

· Log - Event and Data log creation or transfer.

· Access - Operator Access Login/Logout.

· Reason - Setpoint Change Reasons.

· Inv.Alrm - Unconfigured Alarms.

Some of these events only apply to machines which include certain options (SPC, Reasons, Access) or are dependant upon the vintage or configuration of the machine (PLC2Link, CLC Link, Heats). Older machines not equipped with the Troubleshooting package will generate only OI Start events (and SPC and Log events if equipped). Special software or future enhancements may add, change, or eliminate event types.

Events messages will only be sent to the host as they occur, and will not be buffered if the connection to the host is lost. The event text will be sent in all supported languages.

3.6 Cycle Interruptions

The Husky machine transmits cycle interruptions, as they occur, to the host (see Appendix B). The host can also request the last cycle interruption condition at any time. The Husky machine will send the cycle interruption text to the host in all supported languages.

3.7 SPC

If the Husky SPC option is installed, the Husky machine will transmit SPC information to the host when a change in any of the parameters is detected. The host can also request this information at any time.

3.8 Machine Status

“Query Machine Status” will return an ASCII string indicating the status of the machine.

3.9 Remote Printing

When the operator presses the Print-screen key, the current display image is transmitted to the specified print queue. This requires the Husky print-screen option.

To enable remote printing on the host printer, it must be selected via the OI print settings screen. For remote printing to work as desired, the print host must be connected to a printer supported by Husky printing functions.

4. Technical Implementation

4.1 Communications Interface

This section defines the Husky Host Interface. This interface is comprised of three links:

Type 1 - Machine functions (Husky to Host)

Type 2 - Display interface (Husky to Host)

Type 3 - Remote printing (Husky to Print Host).

Each link uses a separate TCP/IP socket connection. At start-up the host system calls the Husky machine.

If the link between the Husky machine and the host system fails or disconnects, the host system must re-establish the connection. When the host link is down, a warning is displayed on the alarm page.

Every 30 seconds the Husky machine will send a message to the host to verify that the connection is still up.

If there is no response to a request within 15 seconds of sending the request, the sender will assume that the connection is down. The sender will also assume that the connection is down if any communication error is detected. Re-establishment will proceed as described above.

At start-up of type 1 and type 2 links, the Husky machine will supply its serial number as a security function to verify the connection is being made with the proper host.

To reduce the number of open streams on the host, type 3 links connect when printing is requested and disconnect when done.

Values larger than one byte will be sent starting with the low order byte and progressing to the highest order byte. There will be word swapping.

The Husky machine requires the following network parameters to configure the link:

· Network ID of the Husky OI

· Network ID of the print host

The supervisor sets these parameters on the “Host Link Configuration” screen.

Preliminary investigations show the Ethernet channel can support in the order of 50 machines. This is based on the following:

· Derating the 10 Mbps Ethernet down to 4 Mbps actual data transferred. (Studies have shown Ethernet to degrade after a total load of 5 Mbps).

· 4 KBytes transferred between the Husky machine and the host during a one second interval. (The load is unlikely to be this high, even with a short machine cycle time).

· One 300 KByte print screen operation is taking place during the above one second interval.

· One 10 KByte set-up is being transferred during the above one second interval.

In practice the performance will be limited more by the Husky and host processors and interface cards than by the communications channel. Additionally, other physical factors would cause the network to be segmented into smaller networks long before the maximum is reached.

4.2 Application Interface

The following describes the application messages and corresponding parameters used to communicate between the host system and the Husky molding machine.

4.2.1 Type 1 - Machine Functions

Type 1 messages provide the host system with access to variables and alarms on the Husky machine. Type 1 messages are also used to send machine set-up information between the host and the Husky machine.

Communication for type 1 messages is via TCP sockets. At start-up time, the host system establishes a connection to port number 5118 decimal on the Husky machine. This connection is used to exchange type 1 messages.

All messages begin with a two byte message size (shown below as <message_size>), followed by a two byte command word. The message size includes all elements within the message. Many, but not all, machine function commands have responses. Commands have the most significant bit of the command word set to zero. Responses have the most significant bit of the command word set to one (0x8000).

A list of type 1 messages specifying the request and the initiating machine is given below:

	Message
	Initiated by:

	Initialize the connection/Verify connection
	Husky OI

	Start of job
	Host

	Languages
	Host

	List process variable names
	Host

	Read process variables
	Host

	End of cycle
	Husky OI

	Events
	Husky OI

	Cycle Interruption
	Husky OI

	Cycle Interruption Query
	Host

	SPC parameters
	Husky OI

	SPC parameters query
	Host

	Machine Status Query
	Host

	Up-load Request
	Host

	Begin set-up up-load
	Husky OI

	Up-load set-up data
	Husky OI

	End set-up up-load
	Husky OI

	Begin set-up down-load
	Host

	Down-load set-up data
	Host

	End set-up down-load
	Host

	Error condition
	Husky OI or Host

Sample data exchange

The following is an example of a typical type 1 message exchange.

	Function
	Husky OI
	Host

	Initialize Connection
	INIT--------------->
	<---INIT response, result=0

	Get languages
	LANGUAGES-------->

response, result=0

English, French, German
	<---LANGUAGES

	Get variables
	LIST response------>

English
	<---LIST, English

	Start Job
	START JOB ----------->

response, result=0
	<---START JOB

	Down-load setup
	BEGIN DOWN-LOAD ------->

response, result=0

DOWN-LOAD response-->

result=0

DOWN-LOAD response-->

result=0

DOWN-LOAD response-->

result=0

END DOWN-LOAD------->

response
	<---BEGIN DOWN-LOAD

<---DOWN-LOAD DATA block 0

<---DOWN-LOAD DATA block 1

<---DOWN-LOAD DATA block 2

<---END DOWN-LOAD

	Machine makes parts
	END OF CYCLE------->
	

	SPC Parameter Change
	SPC PARAMETERS--->
	

	Machine makes parts
	END OF CYCLE------->
	

	SPC Parameter Query
	SPC PARAMETERS--->
	<---SPC PARAMETER QUERY

	Machine makes parts
	END OF CYCLE------->
	

	Cycle Interruption
	CYCLE INTERRUPTION----->
	

	Machine makes parts
	END OF CYCLE------->
	

	Machine makes parts
	END OF CYCLE------->
	

	Event
	EVENT-------------->
	

	Save set-up

Up-load not granted
	BEGIN UP-LOAD------>
	<---BEGIN UP-LOAD response

result=1

	Try again

OK now
	BEGIN UP-LOAD------>

UP-LOAD DATA------->

block 0

UP-LOAD DATA------->

block 1

UP-LOAD DATA------->

block 2

END UP-LOAD-------->
	<---BEGIN UP-LOAD response

result=0

<---UP-LOAD response, result=0

<---UP-LOAD response, result=0

<---UP-LOAD response, result=0

<---END UP-LOAD response

	30 seconds...

Check link
	INIT--------------->
	<---INIT response, result=0

	30 seconds...

Check link

Comm error

Re-establish link

Initialize connection
	INIT--------------->

INIT--------------->
	<---ERROR, invalid message size

<---INIT response, result=0

	30 seconds...

Check link

15 seconds...

Timeout

Re-establish link

Initialize connection
	INIT--------------->

INIT--------------->
	<---INIT response, result=0

4.2.1.1 Initialize the connection

At start-up, after the connection is established, the Husky machine sends the “init” request message to the host.

This must be the first message sent after establishing the connection. It is used to verify that the connection exists between the correct host, Husky machine pair.

The “init” message is also used to verify that the Husky machine-host connection is still up. Every 30 seconds the Husky machine sends the “init” request message to check the status of the link.

	<message_size>
	2 byte integer

	0x10
	2 byte integer

	<serial_number>
	6 byte ASCII

The “init” response message from the host is:

	<message_size>
	2 byte integer

	0x8010
	2 byte integer

	<result>
	2 byte integer

	<synch_time>
	4 byte time format

	<serial_number>
	6 byte ASCII

The <serial_number> field contains the serial number for the Husky machine. It is left justified and padded on the right with spaces. If the <serial_number> field received does not match the Husky machine serial number the host expects, the host should respond with a failed result (see <result> field below) and tear down the connection.

The serial number loaded into the host system is returned in the response message from the host.

The <result> field contains a response code to the request. If the serial number in the message matches the serial number defined in the host system, the <result> will be zero. Otherwise, the “init” request has failed and the <result> field will be non-zero.

The <synch_time> field contains the current time in the host. The value is four bytes long and represents the number of seconds elapsed since 00:00:00 Greenwich mean time (GMT), January 1, 1970.

4.2.1.2 Start of job

The “start” request message is sent from the host to the Husky machine to signal the start of a new job. The Husky OI will clear set-up number one and all of its production counters.

	<message_size>
	2 byte integer

	0x03
	2 byte integer

	<tandem_side>
	1 byte integer

The “start” response message from the Husky machine is:

	<message_size>
	2 byte integer

	0x8003
	2 byte integer

	<result>
	2 byte integer

The <tandem_side> field is only valid for Tandem® machines. It specifies the machine side for the job to be started. The <tandem_side> is 1 for A side, 2 for B side, 3 for both.

The <result> field contains a response code to the request. If the Husky machine has successfully cleared the set-up and the counters, the <result> will be zero. Otherwise, the request has failed and the <result> field will be non-zero.

4.2.1.3 Languages

The host system can get a list of the languages currently supported on the Husky machine by sending the following query message:

	<message_size>
	2 byte integer

	0x40
	2 byte integer

The response from the Husky machine is:

	<message_size>
	2 byte integer

	0x8040
	2 byte integer

	<result>
	2 byte integer

	<number_languages>
	2 byte integer

	<language_code1>
	1 byte ASCII

	<language_code2>
	1 byte ASCII

...

The <result> field contains a response code to the request. If the response is good, the <result> field will be zero, otherwise the <result> field will be non-zero.

The <number_languages> field indicates the number of languages supported on the OI.

The <language_code> field indicates the language supported.

	Language Code
	Language

	’E’
	English

	’G’
	German

	’F’
	French

	’S’
	Spanish

	’I’
	Italian

	’J’
	Japanese

	’D’
	Dutch

	’A’
	Danish

	’P’
	Portugese

	’O’
	Polish

	’H’
	Hungarian

	’W’
	Swedish

	’C’
	Chinese

	’Z’
	Czech

	’R’
	Russian

	’M’
	Romanian

	’L’
	Slovenian

	’K’
	Korean

	’N’
	Croatian

	’T’
	Thai

	’Y’
	Greek

4.2.1.4 List process variable

To list the process variable supported by the Husky machine, the host sends the “list” request message to Husky. The host should send this message after the “init” message and any time the host detects a change in the selected language. The host should use the results of this message to build displays for the Husky OI.

	<message_size>
	2 byte integer

	0x01
	2 byte integer

	<reserved >
	1 byte integer

	<language_code>
	1 byte ASCII

The “list” response message from Husky is:

	<message_size>
	2 byte integer

	0x8001
	2 byte integer

	<reserved >
	1 byte integer

	<language_code>
	1 byte ASCII

	<result>
	2 byte integer

	<variable_name1>
	10 byte ASCII

	<description1>
	30 byte ASCII

	<units1>
	4 byte ASCII

	<format1>
	2 byte integer

	<variable_name2>
	10 byte ASCII

	<description2>
	30 byte ASCII

	<units2>
	4 byte ASCII

	<format2>
	2 byte integer

	...
	

The <language_code> field in the host request indicates the language to be used for the variable descriptions. The Husky machine will also return the language code for the descriptions in the response message.

The <result> field contains a response code to the request. If the response is good, the <result> field will be zero, otherwise the <result> field will be non-zero.

The <variable_name> field contains the name of the variable (refer to Appendix A). This field is left justified and padded on the right with spaces.

The <description> field contains text explaining the data represented by the variable name. The description is in the specified language. This field is left justified and padded on the right with spaces.

The <units> field contains text of the units for this variable name. The units field is sent so that the host system can use them to display data on the Husky OI screen. Possible values for the units fields include:

	Units Field
	Hex Value

	”mm “
	0x6d 0x6d 0x20 0x20

	”oC “ (degrees C)
	0xf8 0x43 0x20 0x20

	”oF “ (degrees F)
	0xf8 0x46 0x20 0x20

	”psi “
	0x70 0x73 0x69 0x20

	”bar “
	0x62 0x61 0x72 0x20

	”mm/s”
	0x6d 0x6d 0x2f 0x73

	” “
	0x20 0x20 0x20 0x20

The <format> field contains the specifier for the type of data referenced by the variable name. The possible formats are:

	Format Field
	Type

	1
	4 byte IEEE floating point

	2
	(Reserved)

	3
	Text Data

A format value of 1 indicates that the variable will be read using the IEEE 4 byte floating point representation.

A format value of 3 indicates that the variable represents text data. The data is represented in the following structure:

	<char1>
	1 byte data (8 bits)

	<char2>
	1 byte data (8 bits)

	...
	

Text data may be used to represent either ASCII character text such as resin type or mold identification, or any raw data which cannot be represented by a floating point variable.

4.2.1.5 Reading process variables

To read process variables, the host sends Husky the “read” request message:

	<message_size>
	2 byte integer

	0x02
	2 byte integer

	<reserved >
	1 byte integer

The “read” response message from Husky is:

	<message_size>
	2 byte integer

	0x8002
	2 byte integer

	<reserved >
	1 byte integer

	<result>
	2 byte integer

	<cycle_number>
	4 byte integer

	<number_of_variables>
	2 byte integer

	<size1>
	2 byte integer

	<value1>
	specified by format type

	<size2>
	2 byte integer

	<value2>
	specified by format type

	...
	

The <result> field contains a response code to the request. If the response is good, the <result> field will be zero, otherwise the <result> field will be non-zero.

The <cycle_number> field contains an integer increasing with each cycle.

The <number_of_variables> field contains the total number of variables being returned in this message.

The <size> field contains the total number of bytes within the value field. For IEEE floating point representations this will be four, but for text data this value will give the total size of the data.

The <value> fields contain the current value of the parameters arranged in the same order as the “list” response message.

4.2.1.6 End of cycle

At the end of each cycle Husky sends the following “end of cycle” indication message to the host:

	<message_size>
	2 byte integer

	0x20
	2 byte integer

	<tandem_side>
	1 byte integer

	<result>
	2 byte integer

	<cycle_number>
	4 byte integer

	<number_of_variables>
	2 byte integer

	<size1>
	2 byte integer

	<value1>
	specified by format type

	<size2>
	2 byte integer

	<value2>
	specified by format type

	...
	

The <tandem_side> field indicates which Tandem® machine sides have completed cycles; 1 for A, 2 for B, 3 for both. For non-Tandem® machines, this field should be ignored.

This message has the same format as the “read” response message, except for the <tandem_side> field. The <result> field will always be zero.

No response is expected to the “cycle” indication message.

4.2.1.7 Events

The Husky machine will send all events as recorded in the event log to the host as they occur. The event text is sent to the host in all languages supported by the OI.

When an event occurs, the Husky machine sends the following “event” message to the host:

	<message_size>
	2 byte integer

	0x50
	2 byte integer

	<date >
	8 byte ASCII

	<time>
	8 byte ASCII

	<number_languages>
	2 byte integer

	<language_code1>
	1 byte ASCII

	<type_text1>
	8 byte ASCII

	<event_text1>
	255 byte ASCII

	<language_code2>
	1 byte ASCII

	<type_text2>
	8 byte ASCII

	<event_text2>
	255 byte ASCII

	...
	

The <date> and <time> field contains the time on the Operator Interface when the event occurred, as displayed on the Machine Events History screen. The date format is YY-MM-DD and the time format is HH:MM:SS on a 24-hour clock.

The <number_languages> field indicates the number of translations sent in this message.

The <language_codeN> fields indicates the language which is used for the event text.

The <typeN> fields contain the 8 character event types as listed above, translated into the specified language.

The <message_textN> fields contains the event text (See Appendix E), as it would be displayed on the Machine Events History screen or extracted by the log conversion program (LOGCONV.EXE), in the specified language.

No response is expected to the Event Message.

4.2.1.8 Cycle Interruptions

The host can obtain cycle interruption information by sending a query to the Husky machine. The Husky machine will also send this information whenever it detects a cycle interruption. The cycle interruption text is sent to the host in all languages supported by the OI.

Husky initiated cycle interruptions

When the Husky machine detects a cycle interruption, it sends the following “cycle interruption” message to the host:

	<message_size>
	2 byte integer

	0x21
	2 byte integer

	<result>
	2 byte integer

	<number_languages>
	2 byte integer

	<language_code1>
	1 byte ASCII

	<cycle_interruption_text1>
	50 byte ASCII

	<language_code2>
	1 byte ASCII

	< cycle_interruption_text2>
	50 byte ASCII

	...
	

The <result> field contains a code to indicate if the cycle interruption text is valid. If the cycle interruption text is valid, the <result> field will be zero, otherwise the <result> field will be non-zero.

The <number_languages> field indicates the number of translations sent in this message.

The <language_code> field indicates the language which is used for the cycle interruption text.

The < cycle_interruption_text> field is a text field describing the cycle interruption in the specified language (see Appendix B).

No response is expected to the “cycle interruption” indication message.

Cycle interruption Query

The host may query the OI for the last cycle interruption using the “cycle interruption query” message:

	<message_size>
	2 byte integer

	0x22
	2 byte integer

The “cycle interruption query” response from the Husky machine is:

	<message_size>
	2 byte integer

	0x8022
	2 byte integer

	<result>
	2 byte integer

	<number_languages>
	2 byte integer

	<language_code1>
	1 byte ASCII

	<cycle_interruption_text1>
	50 byte ASCII

	<language_code2>
	1 byte ASCII

	<cycle_interruption_text2>
	50 byte ASCII

	...
	

This message has the same format as the “Husky initiated cycle interruption” message described earlier.

4.2.1.9 SPC parameters

If the SPC option has been installed, the host may obtain the SPC sample size, sampling period, sampling method, or specification limits in any of the following ways:

· if the Husky machine detects a change in any of the SPC parameters, it will send the host an SPC indication message

· the host may request the parameters at any time by sending the Husky machine an SPC parameters query message

Husky initiated SPC parameters

When the Husky machine detects a change in the SPC sample size, sampling period, sampling method, or any of the specification limits, it will send the following SPC indication message to the host.

	<message_size>
	2 byte integer

	0x30
	2 byte integer

	<reserved>
	1 byte integer

	<result>
	2 byte integer

	<sample_size>
	2 byte integer

	<sample_period>
	2 byte integer

	<sampling_method>
	2 byte integer

	<number_of_variables>
	2 byte integer

	<low_limit1>
	4 byte IEEE floating point

	<high_limit1>
	4 byte IEEE floating point

	<low_limit2>
	4 byte IEEE floating point

	<high_limit2>
	4 byte IEEE floating point

	...
	

The <result> field contains a code indicating if the SPC option is installed on the Husky machine. If the option is installed the <result> field will be zero, otherwise the <result> field will be non-zero.

The <sample_size> field contains an integer which specifies the number of observations per sample.

The <sample_period> field contains an integer which specifies the number of cycles from which to collect one sample (one sample will be collected every <sample_period> cycles).

The <sampling_method> field contains a code indicating the sampling method being used. A value of one indicates that the sampling is cycle-based, and a value of two indicates that the sampling is time-based.

The <number_of_variables> field contains the total number of variables being returned in this message.

The <low_limit> field contains the lower specification limit for the process variable. The process variables are arranged in the same order as the “list” response message.

The <high_limit> field contains the upper specification limit for the process variable. The process variables are arranged in the same order as the “list” response message.

Any variables not selected for SPC monitoring will have low_limit and hight_limit values of 0.0. (Including Text variables, or any other special values not suited to SPC monitoring).

No response is expected to the “SPC parameters” indication message.

SPC parameters query

The host may query the Husky machine for the SPC limits and configuration information by sending the following request message:

	<message_size>
	2 byte integer

	0x31
	2 byte integer

	<reserved >
	1 byte integer

The “SPC parameters query” response from the Husky machine is:

	<message_size>
	2 byte integer

	0x8031
	2 byte integer

	<reserved>
	1 byte integer

	<result>
	2 byte integer

	<sample_size>
	2 byte integer

	<sample_period>
	2 byte integer

	<sampling_method>
	2 byte integer

	<number_of_variables>
	2 byte integer

	<low_limit1>
	4 byte IEEE floating point

	<high_limit1>
	4 byte IEEE floating point

	<low_limit2>
	4 byte IEEE floating point

	<high_limit2>
	4 byte IEEE floating point

	...
	

The parameters are the same as described earlier for the “Husky initiated SPC parameters” message.

4.2.1.10 Machine Status

The host can obtain machine status information by sending a query to the Husky machine. The machine status text is sent to the host in the requested language.

Machine Status Query

The host may query the OI for the machine status using the “machine status query” message:

	<message_size>
	2 byte integer

	0x70
	2 byte integer

	<language_code>
	1 byte ASCII

The “machine status query” response from the Husky machine is:

	<message_size>
	2 byte integer

	0x8070
	2 byte integer

	<result>
	2 byte integer

	<status_text>
	50 byte ASCII

The <language_code> field in the host request indicates the language to be used for the text.

The <result> field in the response contains a response code to the request. If the response is good, the <result> field will be zero, otherwise the <result> field will be non-zero.

The <status_text> fields contains the machine status text in the requested language, as it would be displayed in a machine state event on the Machine Events History screen:

“Idle/Manual”

“Auto Cycling”

“Semi Cycling”

“Cycle Interruption”

“Dry Cycling”

4.2.1.11 Up-load a machine set-up

The up-loading of machine set-ups can be driven from either the machine or the host side of the connection.

Husky initiated up-load

This exchange is started with the following “begin up-load” request message to the host:

	<message_size>
	2 byte integer

	0x11
	2 byte integer

	<reserved>
	1 byte integer

	<date>
	19 byte ASCII

	<mold_number>
	8 byte ASCII

	<machine_type>
	9 byte ASCII

	<serial_number>
	6 byte ASCII

	<resin_type>
	16 byte ASCII

	<set-up_size>
	2 byte integer

The “begin up-load” response message from the host is:

	<message_size>
	2 byte integer

	0x8011
	2 byte integer

	<result>
	2 byte integer

The <date> field contains the date when the set-up was saved. It is presented in the format: “YYYY-MM-DD HH:MM:SS”.

The <mold_number> field contains the mold number for this up-load file.

The <machine_type> field contains the machine number for this up-load file.

The <serial_number> field contains the machine serial number for this up-load file.

The <resin_type> field contains the resin type and name for this up-load file.

The <result> field contains a response code to the request. If the up-load is granted, the <result> field will be zero, otherwise the <result> field will be non-zero.

The <set-up_size> field contains the total number of bytes in the set-up.

Each block of data is sent to the host via the “up-load data” request message:

	<message_size>
	2 byte integer

	0x12
	2 byte integer

	<block_number>
	2 byte integer

	<data>
	up to 1460 hex characters

After receiving the “up-load data” request message, the host responds with the “up-load data” response message:

	<message_size>
	2 byte integer

	0x8012
	2 byte integer

	<block_number>
	2 byte integer

	<result>
	2 byte integer

The <block_number> field contains the number of the current block being sent to the host. Block numbers begin at block zero and increase by one for each block sent.

The <data> field contains the actual file data being sent to the host.

The <result> field contains a response code to the request. If the response is good, the <result> field will be zero, otherwise the <result> field will be non-zero.

After the last block of data is sent, the Husky machine sends the “end up-load” request message:

	<message_size>
	2 byte integer

	0x13
	2 byte integer

	<completion_code>
	2 byte integer

The host responds with the “end up-load” response message:

	<message_size>
	2 byte integer

	0x8013
	2 byte integer

	<result>
	2 byte integer

The <completion_code> field provides a way to abort the transfer. If the transfer was good from the Husky point of view, this field will be zero. A non-zero value in this field aborts the transfer, and the operator must re-send the file.

The <result> field contains a response code to the request. If the whole up-load transfer is good, the <result> field will be zero, otherwise the <result> field will be non-zero.

Host initiated up-load

The host may request that an up-load be initiated by sending the “up-load request from host” message. This request will only be granted if the OI is currently on the Host Terminal screen.

	<message_size>
	2 byte integer

	0x14
	2 byte integer

	<reserved>
	1 byte integer

The Husky machine response message is:

	<message_size>
	2 byte integer

	0x8014
	2 byte integer

	<result>
	2 byte integer

The <result> field contains a response code to the request. If the up-load is granted, the <result> field will be zero, otherwise the <result> field will be non-zero. Once the request has been granted, the OI will send the “begin up-load” message to the host (after the action has been confirmed by the operator) initiating the “Husky initiated up-load” sequence outlined earlier.

Down-load a machine set-up

The down-loading of machine set-ups is driven from the host side of the connection. The exchange is started with the following “begin down-load” request message from the host:

	<message_size>
	2 byte integer

	0x05
	2 byte integer

	<reserved>
	1 byte integer

	<date>
	19 byte ASCII

	<mold_number>
	8 byte ASCII

	<machine_type>
	9 byte ASCII

	<serial_number>
	6 byte ASCII

	<resin_type>
	16 byte ASCII

	<set-up_size>
	2 byte integer

The “begin down-load” response message from the Husky machine is:

	<message_size>
	2 byte integer

	0x8005
	2 byte integer

	<result>
	2 byte integer

The <date> field contains the date when the set-up was saved. It is presented in the format: “YYYY-MM-DD HH:MM:SS”.

The <mold_number> field contains the mold number for this down-load file.

The <machine_type> field contains the machine number for this down-load file.

The <serial_number> field contains the machine serial number for this down-load file.

The <resin_type> field contains the resin type and name for this down-load file.

The <result> field contains a response code to the request. If the down-load is granted, the <result> field will be zero, otherwise the <result> field will be non-zero.

The <set-up_size> field contains the total number of bytes in the set-up.

Each block of data is sent to the Husky machine via the “down-load data” request message:

	<message_size>
	2 byte integer

	0x06
	2 byte integer

	<block_number>
	2 byte integer

	<data>
	up to 1460 hex characters

After receiving the “down-load data” request message, the Husky machine responds with the “down-load data” response message:

	<message_size>
	2 byte integer

	0x8006
	2 byte integer

	<block_number>
	2 byte integer

	<result>
	2 byte integer

The <block_number> field contains the number of the current block being sent to the Husky machine. Block numbers begin at block zero and increase by one for each block sent.

The <data> field contains the actual file data being sent to the Husky machine.

The <result> field contains a response code to the request. If the response is good, the <result> field will be zero, otherwise the <result> field will be non-zero.

After the last block of data is sent, the host sends the “end down-load” request message:

	<message_size>
	2 byte integer

	0x07
	2 byte integer

	<completion_code>
	2 byte integer

The Husky OI responds with “end down-load” response message:

	<message_size>
	2 byte integer

	0x8007
	2 byte integer

	<result>
	2 byte integer

The <completion_code> field provides a way to abort the transfer. If the transfer was good from the host point of view, this field will be zero. A non-zero in this field aborts the transfer, and the operator must initiate a retry.

The <result> field contains a response code to the request. If the whole down-load transfer is good, the <result> field will be zero, otherwise the <result> field will be non-zero.

4.2.1.12 Error

Both the host and the Husky machine can report protocol errors using the “error” message. This message is sent by the side detecting the error and does not have a response.

	<message_size>
	2 byte integer

	0xffff
	2 byte integer

	<error_code>
	2 byte integer

The <error_code> field contains one of the following error codes:

	0x01
	unrecognized/invalid command

	0x02
	incomplete message

	0x03
	invalid message size

	0x04
	invalid message parameter

	0x05
	no response received after 15 seconds

The Husky machine will display a warning message on the alarm page.

4.2.2 Type 2 - Display Interface

Type 2 messages relate to providing a display window on the Husky OI. Messages include starting a display, stopping a display, keystrokes, and displaying information on the Husky window.

Communication for type 2 messages is via TCP sockets. At start-up time, the host must establish a connection to port number 5119 decimal on the Husky machine. This connection is used to exchange type 2 messages.

The display interface is divided into two sections: messages to the host such as key-stroke messages, and display output messages to the Husky screen. All messages begin with a two byte message size, followed by a two byte command word. The message size includes all elements within the message. None of the messages except for the “init” message have responses.

A list of type 2 messages specifying the request and the initiating machine is given below:

	Message
	Initiated by:

	Initialize the connection/Verify connection
	Husky OI

	Start or refresh the display
	Husky OI

	Stop the display
	Husky OI

	Key-stroke
	Husky OI

	Screen display
	Host

	Menu key
	Host

	Error condition
	Husky OI and Host

4.2.2.1 Initialize the connection

See Section 4.2.1.1

4.2.2.2 Start or refresh the display

When the operator presses the “F1” key and selects the Host Terminal screen, the Husky machine sends the following “display on” indication message to the host:

	<message_size>
	2 byte integer

	0x120
	2 byte integer

	<language_code>
	1 byte ASCII

This message instructs the host to re-draw the screen. The <language_code> field indicates the current language in use.

4.2.2.3 Stop the display

When the operator exits from the Host Terminal screen, the Husky machine sends the following “display off” indication message to the host:

	<message_size>
	2 byte integer

	0x121
	2 byte integer

This message instructs the host to stop sending drawing commands to the Husky screen.
4.2.2.4 Key-stroke message

The “key-stroke” indication message is sent to the host whenever the Host Terminal screen is selected and the operator presses a key on the Husky display. The host does not send a response to this message.

	<message_size>
	2 byte integer

	0x122
	2 byte integer

	<key-stroke1>
	2 byte integer

	<key-stroke2>
	2 byte integer

	...
	

The <key-stroke> fields contain the value of the keys that were pressed. The value sent can be determined from Appendix C.

4.2.2.5 Screen display command

The host sends the “display” request message to the Husky machine to draw text and graphics on the OI screen.

	<message_size>
	2 byte integer

	0x130
	2 byte integer

	<display_commands>
	up to 1024 hex characters

The <display_commands> field contains a stream of hex characters containing OI commands. Different commands display text, graphics, fill areas, and select drawing options. A complete list of available OI commands is given in Appendix D.

A whole OI display command must fit into a <display_commands> field and cannot be split between two “display” request messages. To improve performance however, many OI commands should be placed in a single <display_commands> field.

The Husky machine does not send a response to this message.

4.2.2.6 Menu key command

The host sends the “menu key” request message to the Husky machine to change the colours of the menu labels at the bottom of the Host Terminal screen. This command is used to highlight and restore menu labels selected by the operator. This provides a visual feedback to the operator of the options selected. Just as there are ten “Screen Selection Keys”, there are ten soft-key labels.

	<message_size>
	2 byte integer

	0x131
	2 byte integer

	<key-stroke>
	1 byte integer

	<selected_flag>
	1 byte ASCII ‘Y’ or ‘N’

	<menu_label>
	16 byte ASCII

The <key-stroke> field contains the number of the menu label being selected. It is a value from zero to nine, zero for the first key on the left.

The <selected_flag> field indicates if the soft-key being changed was selected or not. If the <selected_flag> is ‘Y’, the key will be highlighted. If the <selected_flag> is ‘N’, the key will be restored to its normal colour. For each menu key pressed, two such messages must be sent. One to clear the old selected soft-key, and one to highlight the new selected soft-key.

The <menu_label> field contains the text for the selected menu label. Menu labels are displayed at the bottom of the screen. Each <menu_label> is displayed as two rows of eight characters each.

The Husky machine does not send a response to this message.

4.2.2.7 Errors

Both the host and the Husky machine can report protocol errors using the “error” message. This message is sent by the side detecting the error and does not have a response.

	<message_size>
	2 byte integer

	0xffff
	2 byte integer

	<error_code>
	2 byte integer

The <error_code> field contains one of the following error codes:
	0x01
	unrecognized/invalid command

	0x02
	incomplete message

	0x03
	invalid message size

	0x04
	invalid message parameter

	0x05
	no response received after 15 seconds

The Husky machine will display a warning message on the alarm page.
4.2.3 Type 3 - Remote Printing

Type 3 communications provides access to the remote printer on a print host for applications running on the Husky machine controller.

Communication of remote print files is via the line printer daemon on the host system. This daemon conforms to the line printer daemon protocol described in RFC 1179.

Husky will send print jobs to the printer queue named “husky_print”. This queue name may be changed on the “Host Link Configuration” screen.

The user id for the print job will be specified as “huskyoi” and the OI host name will be the serial number of the machine.

The Husky machine presents the data in a format for a specific printer type. Print information is sent to the host as a series of distinct print jobs, delimited from each other.

Appendix A - Process Variables

The following lists typical process variables that the host system can read. This list will vary from machine to machine depending on machine type, size, equipped options and special features.

Host software should use the List Variables function to determine the available variables, rather than hard coding.

Variable names are up to 10 characters long. Variable descriptions are 30 characters long. When the host requests variable descriptions, they are returned in the specified language.

	Name
	Variable
	
	RS
	P
	PET

	MCCYTI_A
	Cycle time
	from start of mold close to the next start of mold close
	X
	X
	X

	MOCLTI_U
	Mold closing time
	from start of mold close to clamp tonnage reached
	X
	X
	X

	CLTN_U
	Clamp tonnage
	at the transition between fill and hold
	X
	X
	X

	INSHSI_U
	Shot size
	injection piston position just before the start of injection
	X
	X
	X

	INCS_U
	Cushion position
	injection piston position at the end of hold
	X
	X
	X

	INDI_W
	Shot length
	Shot size minus cushion
	X
	X
	X

	INFLTI_U
	Injection time
	from the start of injection to transition
	X
	X
	X

	INTSPO_U
	Transition position
	
	X
	X
	X

	INTSPR_U
	Transition pressure
	
	X
	X
	X

	INPRHI_U
	Max. Injection Pressure
	from the start of injection to just before transition
	X
	X
	X

	INHOPR0U
	Hold pressure zone 1
	at the end of hold zone 1
	X
	X
	X

	INHOPR1U
	Hold pressure zone 2
	at the end of hold zone 2
	X
	X
	X

	INHOPR2U
	Hold pressure zone 3
	at the end of hold zone 3
	X
	X
	X

	INRCBP_U
	Back pressure
	at 75% of stroke during recovery. (For P/PET, the stroke is defined from start of transfer to end of pack for the previous cycle).
	X
	X
	X

	INRCSP_U
	Screw RPM
	at 75% of stroke during recovery (see Back Pressure)
	X
	X
	X

	INRCTI_U
	Screw run time
	RS: Time from screw rotation start to screw rotation stop. P/PET: time from screw rotation start to screw rotation stop or start or transfer.
	X
	X
	X

	INTRTI_U
	Transfer time
	Time from signal to valve for start of transfer to shot size reached.
	
	X
	X

	INTRPR_U
	Transfer pressure
	when shot size is reached
	
	X
	X

	SPPCPR_U
	Shooting pot pack pressure
	Transfer cylinder pressure at the end of the shooting pot pack timer.
	
	X
	X

	INTOCO_W
	Effective cooling time
	The cooling setpoint (injection screen) plus unclamp time
	X
	X
	X

	MOOPTI_W
	Mold opening time
	From start of unclamp to mold open position reached
	X
	X
	X

	MOOPTI1U
	Mold open time
	Time from mold open setpoint reached to signal to valve for mold close
	X
	X
	X

	EJFWTI_U
	Ejector forward travel time
	Time from signal to valve for ejector forward to ejector forward position reached.
	X
	X
	X

	HYTE_U
	Oil temperature
	All temperature values are logged when full tonnage is reached
	X
	X
	X

	
	(machine heats vary by injection unit)
	
	
	
	

	BATEZO1U
	Extruder temp. 1
	see Oil Temperature
	X
	X
	X

	...
	...
	see Oil Temperature
	X
	X
	X

	BATEZO8U
	Extruder temp. 8
	see Oil Temperature
	X
	X
	X

	BHTEZO1U
	Barrel head temp.
	see Oil Temperature
	X
	X
	X

	SHTEZO1U
	Shut-off head temp.
	see Oil Temperature
	X
	X
	X

	NOTEZO1U
	Nozzle
	see Oil Temperature
	X
	X
	X

	HOTEZO_U
	Resin temp. at feed throat
	see Oil Temperature
	
	
	X

	
	(Cavity pressure sensing is a machine option)
	
	
	
	

	INTSCV_U
	Cavity pressure at transition
	
	O
	O
	O

	INCVPR_U
	Maximum cavity pressure
	from the start of injection to just before transition
	O
	O
	O

Appendix B - Cycle Interruptions

The following lists typical cycle interruptions that the Husky controller can send to the host system. Possible cycle interruptions will vary according to machine type, size, and equipment.

The actual cycle interruptions text is no longer than 50 characters in length. Cycle interruptions are sent to the host in all supported languages. Only the English version of the text is listed below as an explanation.

Safety Gate Open

Excess Injection Time

Excess Cycle Time

Parts on Core

Appendix C - Key-Strokes

The following shows the values sent to the host in a key-stroke message when the listed keys are pressed. Each value is sent as an unsigned integer

	Key-Stroke
	Decimal or Character Value
	

	Sub-family keys. (top row of “Screen Selection Keys”)
	340 to 349
	

	F2 to F10
	316 to 324
	

	Page up
	329
	

	Page down
	337
	

	Home
	327
	

	Backspace
	8
	

	Escape
	27
	

	Enter
	13
	

	Digits 0 to 9
	48 to 57
	(ASCII ‘0’ to ‘9’)

	Decimal point
	46
	(ASCII ‘.’)

	Minus
	45
	(ASCII ‘-‘)

	Cursor Up
	328
	

	Cursor Down
	336
	

	Cursor Left
	331
	

	Cursor Right
	333
	

	Help
	353
	

	Window-in
	350
	

	Window-out
	351
	

	F1
	-- not sent to host --
	

	Print-screen
	-- not sent to host --
	

Appendix D - Display Commands

The following lists the available display commands for the Husky Operator Interface. When sending display commands to the Husky machine they must not be split into pieces. Several display commands can however, be joined together to improve display performance.

Scrolling - scroll the bounded area one pixel to the right.

19 decimal

1 byte integer (GAPI_AREA_SCROLL)

<x1>

2 byte integer

<y1>

2 byte integer

<x2>

2 byte integer

<y2>

2 byte integer

Description

The area defined by x1,y1 and x2,y2 is scrolled 1 pixel to the right. x1,y1 and x2,y2 are coordinates in pixels referenced from the lower left hand corner of the window.

All coordinates are sixteen bits.

Parameters

x1

16 bit

y1

16 bit

x2

16 bit

y2

16 bit

XOR Mode - select xor-mode and normal drawing.

4 decimal

1 byte integer (GAPI_SELECT_XOR)

<xor_mode>

1 byte integer

Note: A value of 1 is xor_mode on, and a value of 0 is xor_mode off.

Description

xor_mode is a single byte: any non-zero value indicates that graphics drawn are to be drawn in xor mode.

Parameters

xor mode

 8 bit

Fast Text - display text at row y and column x.

15 decimal

1 byte integer (GAPI_FTEXT)

<row_y>

1 byte integer

<column_x>

1 byte integer

<text>

null terminated ASCII

Description

The null-terminated string pointed to by text is displayed in row y, at column x (referenced from the upper left corner). Positioning is by character blocks, not pixels. x and y are 8 bits, and the data pointed to by text is copied, up to the terminating null.

Parameters

x

8 bit

y

8 bit

text

null-terminated string

Line - draw a line.

12 decimal

1 byte integer (GAPI_LINE)

<x1>

2 byte integer

<y1>

2 byte integer

<x2>

2 byte integer

<y2>

2 byte integer

Description

x1,y1 are the coordinates in pixels of the first point, x2,y2 are the coordinates of the second point. Coordinates are referenced from the lower left hand corner of the window. The line is drawn in the preselected colour and xor mode.

All coordinates are sixteen bits.

Parameters

x1

16 bit

y1

16 bit

x2

16 bit

y2

16 bit

Colours - select colours to be used when drawing.

3 decimal

1 byte integer (GAPI_SELECT_COLOUR)

<foreground>

1 byte integer

<background>

1 byte integer

Description

Colours are one byte values. For graphics commands, only the foreground colour is significant, indicating colour to be drawn. The command is followed by two bytes of colour information.

Note: The values for available colours are:

	Black
	0

	Blue
	1

	Green
	2

	Cyan
	3

	Red
	4

	Magenta
	5

	Orange
	6

	Bright Grey
	7

	Grey
	8

	Bright Blue
	9

	Bright Green
	10

	Bright Cyan
	11

	Bright Red
	12

	Bright Magenta
	13

	Yellow
	14

	White
	15

Parameters

Foreground Colour

8 bit

Background

8 bit

Bar - draws a bar bounded by x1, y1, x2 and y2.

14 decimal

1 byte integer (GAPI_BAR)

<x1>

2 byte integer

<y1>

2 byte integer

<x2>

2 byte integer

<y2>

2 byte integer

Description

The area within the selected window bounded by x1,y1 and x2,y2 (coordinates relative the to lower left corner of the window) is filled with the currently selected foreground colour. All coordinates are sixteen bit quantities. The XOR mode does not effect this command.

Parameters

x1

16 bit

y1

16 bit

x2

16 bit

y2

16 bit

Flood Fill - flood the area containing the point at x, y.

18 decimal

1 byte integer (GAPI_FLOOD)

<x>

2 byte integer

<y>

2 byte integer

Description

Floods the area containing the specified x, y pixel position (referenced from the lower left corner of the window) with the current foreground colour.

Parameters

x

16 bit

y

16 bit

Appendix E - Event Text Formats

Unless otherwise stated, the format of the time values embedded within the message text is YY-MM-DD HH:MM:SS.

Event Type: Cyc. Int.

	Summary:
	Cycle interruption active or inactive

	Templates:
	“message [Active]”

“message [Inactive (active time was time)]”

	Description:
	Indicates when the cycle interruption described by the message went active and inactive. The time in the inactive message serves to link the two events.

Event Type: Alarm

	Summary:
	Alarm active or inactive

	Templates:
	“message [Active]”

“message [Inactive (active time was time)]”

	Description:
	Indicates when the alarm described by the message went active and inactive. The time in the inactive message serves to link the two events.

Event Type: Setpoint

	Summary:
	Setpoint or option change

	Templates:
	“name selected”

“name option state”

“name changed from old_value to new_value [units]”

	Description:
	Records when the specified selection, option or setpoint described by name was changed. For setpoints, the old (old_value) and new (new_value) values are shown. Options show the state (ON or OFF) that the option was changed to. The units are those selected at the operator interface at the time of the setpoint change.

Event Type: Machine

	Summary:
	Machine state changes

	Templates:
	“Initial state is init_state after OI power up”

“new_state from old_state (started time) state change”

	Description:
	Indicates what the first state was when the OI started up and any subsequent changes to the machine state. Each of init_state, new_state and old_state can be one of

· “Idle/Manual”

· “Auto Cycling”

· “Semi Cycling”

· “Cycle Interruption”

· “Dry Cycling”

The time is the date and time when the machine went into the old_state.

Event Type: OI Start

	Summary:
	Startup of the Operator Interface (OI).

	Templates:
	“No power to OI from start_time to end_time”

	Description:
	Indicates when the Operator Interface was shut down (at time start_time) and then restarted (at time end_time). Note that the start_time and end_time fields do not show the seconds (YY-MM-DD HH:MM) since resolution of power down detection is approximately 1 minute.

Event Type: PLC Link

	Summary:
	PLC communications

	Templates:
	Running

Failed

Operator Interface Connected To PLC

Operator Interface Not Connected To PLC

PLC Backup Saved Successfully

PLC Backup Recalled Successfully

Recalling PLC Backup - Waiting For PLC Stop

Recalling PLC Backup - Waiting For PLC Run

Hydraulic Pump Is On - Turn Pump Off

Failed To Recall PLC Backup

Failed To Save PLC Backup

Bad PLC Backup File

Missing PLC Datablocks

Short PLC Datablocks

DB41 Not At Address 0x100A - Load DB41 First

PLC DB(s) Changed - Unplug OI Before Changes!

Mailbox Handshake Timeout - PLC Stopped?

Options Handshake Timeout - PLC Stopped?

PLC Empty, No PLC Program Backup

	Description:
	Indicates the various events, and errors which may be encountered by the PLC Communications process. Refer to the PLC Save & Recall screen description for more information on each message.

Event Type: PLC2Link

	Summary:
	Second PLC communications

	Templates:
	Recalling PLC Backup - Waiting For PLC Stop

Recalling PLC Backup - Waiting For PLC Run

Running

PLC Backup Recalled Successfully

PLC Backup Saved Successfully

Hydraulic Pump Is On - Turn Pump Off

Failed To Recall PLC Backup

Failed To Save PLC Backup

Bad PLC Backup File

Missing PLC Datablocks

Short PLC Datablocks

DB41 Not At Address 0x100A - Load DB41 First

PLC DB(s) Changed - Unplug OI Before Changes!

Mailbox Handshake Timeout - PLC Stopped?

Options Handshake Timeout - PLC Stopped?

PLC Empty, No PLC Program Backup

Failed

Operator Interface Connected To PLC

Operator Interface Not Connected To PLC

	Description:
	Indicates the various events, and errors which may be encountered by the second PLC Communications process. Refer to the PLC Save & Recall screen description for more information on each message.

Event Type: CLC Link

	Summary:
	CLC robot controller communications

	Templates:
	Running

Failed

Operator Interface Connected to CLC

Operator Interface Not Connected to CLC

Recalling CLC Backup

Saving CLC Backup

CLC Backup Saved Successfully

CLC Backup Recalled Successfully

CLC Program Saved Successfully To Floppy

CLC Program Recalled Successfully From Floppy

Robot Power On - Switch Robot Power Off To Recall

CLC Not Ready for Recall

Failed to Restart CLC Program During Recall

Failed to Recall CLC Backup

Failed to Save CLC Backup

Bad CLC Backup File

No CLC Backup Exists

CLC Empty, No CLC Backup Exists

Error Returned From CLC

Bad CLC Axis Units Conversion

CLC is Missing Tagname

Options Handshake Timeout

	Description:
	Indicates the various events, and errors which may be encountered by the CLC Communications process. Refer to the CLC Save & Recall screen description for more information on each message.

Event Type: Bnchmark

	Summary:
	Capturing cycle time breakdown benchmark.

	Templates:
	“Machine Cycle Time Breakdown Benchmark captured”

“Failed to capture Machine Cycle Time Breakdown Benchmark”

	Description:
	Indicates whether the cycle time breakdown benchmark was successfully saved or not. Saving of the benchmark is initiated from the Cycle Time Breakdown screen.

Event Type: Setup

	Summary:
	Recall of a mold setup

	Templates:
	“Recalled source setup #setup_number: Serial No.: serial_number, Mold: mold_number, Resin: resin_name”

“Failed to recall source setup #setup_number: Serial No.: serial_number, Mold: mold_number, Resin: resin_name”

	Description:
	Indicates that a mold setup was recalled (to the current setup) either successfully (“Recalled...”) or unsuccessfully (“Failed to recall...”). The source is one of “Local” or “Portable” and the setup_number indicates which of the setups was recalled. The serial_number, mold_number and resin_name describe the mold setup as seen on the Mold Setup Memory screen.

Event Type: Heats

	Summary:
	Temperature controls related faults.

	Templates:
	"zone - Broken Thermocouple [Active]"

“zone - Broken Thermocouple [Inactive (active time was time)]"

"Heats Controller - Card n - Hardware Fault [Active]"

"Heats Controller - Card n - Hardware Fault [Inactive (active time was time)]"

"Heats Controller - Card card - RTD Sensor Fault [Active]"

"Heats Controller - Card card - RTD Sensor Fault [Inactive (active time was time)]"

"Heats Tuning Incomplete or Stopped - zone [Active]"

"Heats Tuning Incomplete or Stopped - zone [Inactive (active time was time)]"

	Description:
	Indicates a broken thermocouple, controller hardware fault, or heats tuning failure. The zone or card indicates which machine or mold heats zone or temperature control card is affected. The time in the inactive message serves to link the two events. Refer to the following machine alarm messages for further information:

· “Thermocouple Broken - Machine”

· “Thermocouple Broken - Mold”

· “Oil Temperature Sensing Fault”

· “Heats Tuning Incomplete”

· “Heats Controller Hardware Fault”

· ”Heats Controller RTD Sensor Fault”

Event Type: Log

	Summary:
	Creation, corruption or transferring of a log.

	Templates:
	1. “log_type log created”

2. “Possibly lost log_type log entries during last power down”

3. “Entire log_type log transferred to floppy diskette”

4. “Transferred entries since last transfer in log_type log to floppy diskette”

	Description:
	In all messages, log_type is one of “Event” or “Data”. The messages indicate:

1. a log was created and is therefore empty at that point.

2. log entries may have been lost the last time the Operator Interface was powered down.

3. an entire log was transfered to floppy disk from the Log Transfer screen.

4. a portion of a log was transfered to floppy disk from the Log Transfer screen: either all since last transfer, or a time range (if applicable).

Event Type: SPC

	Summary:
	Statistical Process Control (SPC) Package.

	Templates:
	variable - Point above Specification Limits Alarm state
variable - Point below Specification Limits Alarm state
variable - Outside X-bar Control Limits Alarm state
variable - Run Alarm state
variable - Trend Alarm state
variable - Alternating Data Alarm state
variable - Cpk below Threshold Alarm state

variable Specification Limits changed to upper - lower

Defect counts have been reset

variable has been reset

All SPC variables have been reset

	Description:
	Indicate alarms relating to process variables, or operator actions relating to SPC. The variable is the process variable name as appearing on the SPC Summary screen. The state (On or Off) indicates whether the alarm went active or inactive. The “Specification Limits changed”, “Defect counts have been reset”, “variable has been reset” and “All SPC variables have been reset” events appear only on older machines not equipped with the Troubleshooting package.

Event Type: Access

	Summary:
	Operator Access Package

	Templates:
	Access Control File Backed Up

Access Control File Restored

Access control file created

Error: Access Control File Not Backed Up

Error: Access Control File Not Restored

User user created with access level level
User user deleted

User user logged in

User user logged out

User user logged out - Automatic Logout

	Description:
	Indicates the events associated with Operator Access Package including operator login or logout and Access Control File manipulation.

Event Type: Reason

	Summary:
	Setpoint Change Reasons Package.

	Templates:
	reason (number)

reason (number) - comment

	Description:
	Records the reason, the associated reason number and the optional operator comment entered for a setpoint change (only applies if the Setpoint Change Reasons package is installed on the machine). This event is logged immedaitely after the Setpoint event corresponding to the setpoint being changed. The reason and number are as defined on the Setpoint Change Reasons screen at the time of the setpoint change.

Event Type: Inv. Alarm

	Summary:
	Unrecognized alarm

	Templates:
	“Invalid value alarm detected: value=alarm_value, tag=tag_name, test=test_type”

	Description:
	Indicates that an alarm occurred for which no message is associated (the alarm_value, tag_name and test_type fields are used by Husky to help determine why the event occurred). This event also corresponds to the alarm “Unrecognized Alarm Occurred”.

V2.00 - November 8, 1999

Page 60

SPECIFICATION SUBJECT TO CHANGE
November 8, 1999

SPECIFICATION SUBJECT TO CHANGE
Page 59

NovNovember 8, 1999

